Remove Accountability Remove Analytics Remove Government
article thumbnail

Governing the ML lifecycle at scale, Part 3: Setting up data governance at scale

AWS Machine Learning

This post is part of an ongoing series about governing the machine learning (ML) lifecycle at scale. This post dives deep into how to set up data governance at scale using Amazon DataZone for the data mesh. However, as data volumes and complexity continue to grow, effective data governance becomes a critical challenge.

article thumbnail

Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker

AWS Machine Learning

However, implementing security, data privacy, and governance controls are still key challenges faced by customers when implementing ML workloads at scale. Governing ML lifecycle at scale is a framework to help you build an ML platform with embedded security and governance controls based on industry best practices and enterprise standards.

Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Trending Sources

article thumbnail

Amazon SageMaker Feature Store now supports cross-account sharing, discovery, and access

AWS Machine Learning

SageMaker Feature Store now makes it effortless to share, discover, and access feature groups across AWS accounts. With this launch, account owners can grant access to select feature groups by other accounts using AWS Resource Access Manager (AWS RAM).

article thumbnail

Unlock the power of data governance and no-code machine learning with Amazon SageMaker Canvas and Amazon DataZone

AWS Machine Learning

Amazon DataZone is a data management service that makes it quick and convenient to catalog, discover, share, and govern data stored in AWS, on-premises, and third-party sources. However, ML governance plays a key role to make sure the data used in these models is accurate, secure, and reliable. For Select a data source , choose Athena.

article thumbnail

6 Killer Applications for Artificial Intelligence in the Customer Engagement Contact Center

If Artificial Intelligence for businesses is a red-hot topic in C-suites, AI for customer engagement and contact center customer service is white hot. This white paper covers specific areas in this domain that offer potential for transformational ROI, and a fast, zero-risk way to innovate with AI.

article thumbnail

How Deltek uses Amazon Bedrock for question and answering on government solicitation documents

AWS Machine Learning

This post provides an overview of a custom solution developed by the AWS Generative AI Innovation Center (GenAIIC) for Deltek , a globally recognized standard for project-based businesses in both government contracting and professional services. Deltek serves over 30,000 clients with industry-specific software and information solutions.

article thumbnail

Building a Great CX Team

CX Accelerator

Customer Insights/Measurement/Analytics. CUSTOMER INSIGHTS/MEASUREMENT/ANALYTICS Understanding your customers is at the heart of customer experience. Once customer data has been gathered, an analytics function is required to derive meaningful, actionable insight from it. The 8 skills required by any CX team are: Strategy.