Remove APIs Remove Big data Remove Engineering Remove Scripts
article thumbnail

­­Speed ML development using SageMaker Feature Store and Apache Iceberg offline store compaction

AWS Machine Learning

As feature data grows in size and complexity, data scientists need to be able to efficiently query these feature stores to extract datasets for experimentation, model training, and batch scoring. SageMaker Feature Store automatically builds an AWS Glue Data Catalog during feature group creation.

Scripts 73
article thumbnail

Use RAG for drug discovery with Knowledge Bases for Amazon Bedrock

AWS Machine Learning

The Retrieve and RetrieveAndGenerate APIs allow your applications to directly query the index using a unified and standard syntax without having to learn separate APIs for each different vector database, reducing the need to write custom index queries against your vector store.

APIs 113
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Amazon SageMaker Feature Store now supports cross-account sharing, discovery, and access

AWS Machine Learning

Let’s demystify this using the following personas and a real-world analogy: Data and ML engineers (owners and producers) – They lay the groundwork by feeding data into the feature store Data scientists (consumers) – They extract and utilize this data to craft their models Data engineers serve as architects sketching the initial blueprint.

article thumbnail

Enable fully homomorphic encryption with Amazon SageMaker endpoints for secure, real-time inferencing

AWS Machine Learning

Applications and services can call the deployed endpoint directly or through a deployed serverless Amazon API Gateway architecture. To learn more about real-time endpoint architectural best practices, refer to Creating a machine learning-powered REST API with Amazon API Gateway mapping templates and Amazon SageMaker.

Scripts 95
article thumbnail

Reduce cost and development time with Amazon SageMaker Pipelines local mode

AWS Machine Learning

Developers usually test their processing and training scripts locally, but the pipelines themselves are typically tested in the cloud. From a very high level, the ML lifecycle consists of many different parts, but the building of an ML model usually consists of the following general steps: Data cleansing and preparation (feature engineering).

Scripts 72
article thumbnail

Build and train computer vision models to detect car positions in images using Amazon SageMaker and Amazon Rekognition

AWS Machine Learning

Finally, we show how you can integrate this car pose detection solution into your existing web application using services like Amazon API Gateway and AWS Amplify. For each option, we host an AWS Lambda function behind an API Gateway that is exposed to our mock application. iterdir(): if p_file.suffix == ".pth":

APIs 63
article thumbnail

How Amp on Amazon used data to increase customer engagement, Part 1: Building a data analytics platform

AWS Machine Learning

Amp wanted a scalable data and analytics platform to enable easy access to data and perform machine leaning (ML) experiments for live audio transcription, content moderation, feature engineering, and a personal show recommendation service, and to inspect or measure business KPIs and metrics. Data Engineer for Amp on Amazon.