article thumbnail

Secure Amazon SageMaker Studio presigned URLs Part 3: Multi-account private API access to Studio

AWS Machine Learning

In the post Secure Amazon SageMaker Studio presigned URLs Part 2: Private API with JWT authentication , we demonstrated how to build a private API to generate Amazon SageMaker Studio presigned URLs that are only accessible by an authenticated end-user within the corporate network from a single account.

APIs 82
article thumbnail

Secure Amazon SageMaker Studio presigned URLs Part 2: Private API with JWT authentication

AWS Machine Learning

In this post, we will continue to build on top of the previous solution to demonstrate how to build a private API Gateway via Amazon API Gateway as a proxy interface to generate and access Amazon SageMaker presigned URLs. The user invokes createStudioPresignedUrl API on API Gateway along with a token in the header.

APIs 93
Insiders

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Securing MLflow in AWS: Fine-grained access control with AWS native services

AWS Machine Learning

In this post, we address these limitations by implementing the access control outside of the MLflow server and offloading authentication and authorization tasks to Amazon API Gateway , where we implement fine-grained access control mechanisms at the resource level using Identity and Access Management (IAM). Adds an IAM authorizer.

APIs 83
article thumbnail

Identify objections in customer conversations using Amazon Comprehend to enhance customer experience without ML expertise

AWS Machine Learning

In this post, we explore how AWS customer Pro360 used the Amazon Comprehend custom classification API , which enables you to easily build custom text classification models using your business-specific labels without requiring you to learn machine learning (ML), to improve customer experience and reduce operational costs.

article thumbnail

Secure Amazon SageMaker Studio presigned URLs Part 1: Foundational infrastructure

AWS Machine Learning

The corporate portal application makes a private API call using an API Gateway VPC endpoint to create a presigned URL. The API Gateway VPC endpoint “create presigned URL” call is forwarded to the Route 53 inbound resolver on the customer VPC as configured in the corporate DNS. About the Authors.

APIs 91
article thumbnail

Use Amazon SageMaker pipeline sharing to view or manage pipelines across AWS accounts

AWS Machine Learning

You can now use cross-account support for Amazon SageMaker Pipelines to share pipeline entities across AWS accounts and access shared pipelines directly through Amazon SageMaker API calls. The data scientist is now able to describe and monitor the test pipeline run status using SageMaker API calls from the dev account.

article thumbnail

Generate images from text with the stable diffusion model on Amazon SageMaker JumpStart

AWS Machine Learning

We explore two ways of obtaining the same result: via JumpStart’s graphical interface on Amazon SageMaker Studio , and programmatically through JumpStart APIs. If you want to jump straight into the JumpStart API code we go through in this post, you can refer to the following sample Jupyter notebook: Introduction to JumpStart – Text to Image.

APIs 109